Identification and characterization of artists' red dyes and their mixtures by surface-enhanced Raman spectroscopy.

نویسندگان

  • Alyson V Whitney
  • Francesca Casadio
  • Richard P Van Duyne
چکیده

Silver film over nanospheres (AgFONs) were successfully employed as surface-enhanced Raman spectroscopy (SERS) substrates to characterize several artists' red dyes including: alizarin, purpurin, carminic acid, cochineal, and lac dye. Spectra were collected on sample volumes (1 x 10(-6) M or 15 ng/microL) similar to those that would be found in a museum setting and were found to be higher in resolution and consistency than those collected on silver island films (AgIFs). In fact, to the best of the authors' knowledge, this work presents the highest resolution spectrum of the artists' material cochineal to date. In order to determine an optimized SERS system for dye identification, experiments were conducted in which laser excitation wavelengths were matched with correlating AgFON localized surface plasmon resonance (LSPR) maxima. Enhancements of approximately two orders of magnitude were seen when resonance SERS conditions were met in comparison to non-resonance SERS conditions. Finally, because most samples collected in a museum contain multiple dyestuffs, AgFONs were employed to simultaneously identify individual dyes within several dye mixtures. These results indicate that AgFONs have great potential to be used to identify not only real artwork samples containing a single dye but also samples containing dyes mixtures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An innovative surface-enhanced Raman spectroscopy (SERS) method for the identification of six historical red lakes and dyestuffs

Surface-enhanced Raman spectroscopy (SERS) was used in this work to obtain highly detailed spectra of artists’ red lake pigments and colorants. In the past, Raman spectroscopy has been successfully employed to identify many pigments and modern synthetic dyes. Unfortunately, red lake pigments and dyes commonly employed in artistic production from antiquity to the mid-nineteenth century are often...

متن کامل

Unification of Surface Enhanced Raman Spectroscopy of Dyes Using One Pot Synthesized Stabilized Ag Nanoparticles

stabilized Ag Nanoparticles (NPs) were synthesized using Lee-Meisel method under three different conditions in an oil bath. UV-Vis spectroscopy of the Ag NPs showed a Localized Surface Plasmon (LSP) band around 430 nm, indicating Ag NPs had a size range around 40 nm. To fabricate a surface Enhanced Raman Spectroscopy (SERS) substrate, LSP properties of Ag NPs was employed with the goal of detec...

متن کامل

Biosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles

Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...

متن کامل

Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis.

Tailored ad-hoc methods must be developed for successful identification of minute amounts of natural dyes on works of art using Surface-Enhanced Raman Spectroscopy (SERS). This article details two of these successful approaches using silver film over nanosphere (AgFON) substrates and silica gel coupled with citrate-reduced Ag colloids. The latter substrate functions as the test system for the c...

متن کامل

1064 nm Dispersive Raman Micro-spectroscopy for the in-situ Identification of Organic Red Colorants

key words: 1064 nm dispersive Raman spectroscopy, pigment analysis, traditional red artists’ colorants Raman spectra of red colorants were obtained in-situ using a dispersive Raman microscope equipped with a 1064 nm laser source and InGaAs array detector. By employing nearIR excitation, the fluorescence of organic colorants is significantly reduced compared to visible wavelengths. Spectra prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied spectroscopy

دوره 61 9  شماره 

صفحات  -

تاریخ انتشار 2007